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AIを用いた設備電力データの
可視化・分析ツールの構築に向けて

導入・背景

AIを用いた設備電力データの可視化・分析ツールの構築

AIを用いた可視化・分析

設備の消費電力の時系列データを使用
・省エネの高いニーズ
・比較的、取得しやすい

・人手では捉えにくいパターンや異常を発見し、改善や
最適化に役立つ視点を得ることが可能かどうか、探索
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生成AI活用による開発の加速

AIを用いた設備電力データの可視化・分析ツールの構築

知識が少ない状態から、短期間での開発が可能
•知識不足からのスタートを補完
AIや分析の専門知識が少なくても、生成AIへ質問す
ることで、実装方法やコード例が提示され、学びなが
ら開発を進められる。
•短期間で成果物を構築
従来なら時間を要するデータ処理や可視化について、
生成AIの支援により、数週間程度で形にできた。
•試行錯誤の効率化
プログラムのエラー修正や改良もAIが行ってくれるた
め、開発サイクルを高速に回せる。

このデータを可視
化してください
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matplotlibによるデータの可視化

AIを用いた設備電力データの可視化・分析ツールの構築

エクセルでのグラフ作成との比較
観点 Excel グラフ Matplotlib（Python）
お手軽 直感操作で即作図 コードを書く必要あり
自動化 VBAで可能 ループ一発で数百図を量産

データ連携 表ベースで軽～中規
模は簡単

pandas/Numpy/SQL/CS
V/Parquet/と直結

大規模デー
タ 行数・応答性に限界 数十万～千万点でも工夫次

第で処理可能

カスタマイ
ズ自由度

凡例/軸/注釈などは
GUI範囲で制約

目盛・補助線・投影・複合
軸・等高線・カラーマップ
等、細部まで可能

配布・権限 Excelで配布 画像/PDF配布

プレス機の消費電力
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matplotlibによるデータの可視化

AIを用いた設備電力データの可視化・分析ツールの構築

PythonやAIとの親和性

•データ処理～AI分析～可視化がワンフロー
→ 切り貼り不要、属人化を防止。
•モデルの挙動をグラフで直感的に検証
→ 学習曲線や予測分布を可視化して判断。
•AIとノーコード連携可能
→ ChatGPTなどからコードを自動生成し、即実行できる。
•再現性と自動化の高さ
→ AIの結果を含む報告書を定期的に自動生成できる。
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分析方法 ①クラスタリング

AIを用いた設備電力データの可視化・分析ツールの構築

k-means法
•データを「似たもの同士」でグループ
分けする方法。

１．グループ数（K）を決める︓4グループに分けた
い → K=2
２．仮の中心点を置くデータの中に「このあたりが
中心かな︖」という点をランダムに置く。
３．それぞれのデータを近い中心に割り当てる→ 「
どの中心に一番近いか」で振り分け。
４．中心を計算し直す→ グループに属した点の“平均
”を取り、それを新しい中心とする。
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分析方法 ①クラスタリング

AIを用いた設備電力データの可視化・分析ツールの構築

階層的クラスタリング
•データを「木（ツリー）」のようにまとめて
いく方法

（代表的な「凝集型クラスタリング」の場合）
１．全データを一人ずつバラバラにする→ 最初
は「N個のグループ（クラスタ）」
２．一番近いもの同士をくっつける→ 2点がま
とまり、クラスタになる
３．次に近いクラスタ同士をくっつける→ だん
だん大きなクラスタにまとめていく

階層的クラスタリングの例
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分析方法 ②外れ値検出

AIを用いた設備電力データの可視化・分析ツールの構築

isolation forestによる外れ値検知
•外れ値（異常値）を見つけるための機械学習アルゴリズム
名前の通り、“孤立させる”ことで外れ値を検知

1.データをランダムに分割する
→ 例えば「温度が50℃より高い︖低い︖」というルールで枝分かれ
2.分割を繰り返していく
→ 木（decision tree）のように、データが分類されていく
3.外れ値はすぐ孤立する
•普通のデータ︓他と似ているので何度も枝分かれしないと分離できない
•外れ値︓他と違うので、数回の分割ですぐに孤立する。
4.孤立の速さをスコア化
→ すぐ孤立したデータほど「外れ値度が高い」と判断する。 8



分析方法 ③周期性の発見

AIを用いた設備電力データの可視化・分析ツールの構築

周期性の発見による長期傾向の抽出
「毎日、何時ごろ消費電力が高くなる」「曜日によって故
障率がちがう」など、一定のリズムで繰り返す“波”をとらえ
る

•フーリエ変換やスペクトル解析
→ 周波数成分を調べ、どんな周期（例：7日周期、12
カ月周期）が強いかを定量的に把握。
•自己相関（ACF: Autocorrelation Function）
→ 「何日／何か月ずらすとデータ同士が似ているか？
」を調べて、繰り返し周期を発見。
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ツール化とユーザーインタフェース

AIを用いた設備電力データの可視化・分析ツールの構築

操作画面のイメージ
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ツール化とユーザーインタフェース

AIを用いた設備電力データの可視化・分析ツールの構築

分析結果の提示
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ツール化とユーザーインタフェース

AIを用いた設備電力データの可視化・分析ツールの構築

AIによる分析結果の提示
・1時間平均電力消費量は、各ファイルで明確な周期的なパ
ターンを示し、ピーク時と谷時の区別が明確です。例えば、
ピーク電力消費は通常10時頃に発生し、最低電力消費は0時
頃です。

・1日平均電力消費量にもパターンが見られます。ピーク電
力消費は金曜日に発生し、最低電力消費は日曜日に発生する
傾向があります。
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開発環境

AIを用いた設備電力データの可視化・分析ツールの構築

・Google Colab
Googleが提供する、ブラウザ上で機械学習・データ分析用の
Pythonコードを実行できる無料のクラウドベース開発環境

・Google Drive
ファイルの置き場所として使用

・言語︓Python

・Gemini
Googleが提供している生成AIサービス。上記の環境との親和性が高い。

シンプルで読みやすいオープンソースプログラミング言語。AIに
関する多数のライブラリが使用できる。
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セキュリティ対応

AIを用いた設備電力データの可視化・分析ツールの構築

ガイドラインの制定

・ガイドラインの制定を実施
・「学習しない設定」にする
・生成AIへ入れてはならない情報を決めておく
・ガイドラインに沿って教育を実施
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まとめ・今後の展望

AIを用いた設備電力データの可視化・分析ツールの構築

本研究の成果と実用性

エネルギー利用効率化への貢献

今後の改善や発展の方向性

・データの周期性や外れ値を捉える手法を用いて、データの見える化、
異常検知や長期傾向の把握を可能にした
・生成AIを活用することで、短期間での開発を行うことが出来た

・エネルギー消費の無駄やピークの把握が容易になり、効率的な運転計画
や改善施策に直接つなげられることが期待される

・さらに長期かつ多様なデータを取得・活用し、AI・機械学習との統合に
よって、自動化や予測精度の向上を高めることで、実運用における意思決定
の支援を強化する 15


